8月20日,理想汽車(chē)6.1.0版本更新,并內(nèi)測(cè)了E2E(端到端)-VLM Beta 2.1版本。
據(jù)悉,本次更新增加了端到端-VLM系統(tǒng)與NOA系統(tǒng)切換的功能,可感受不同系統(tǒng)的駕駛風(fēng)格,系統(tǒng)相互切換時(shí)間約為20s。此外,本次更新還迭代了端到端模型,優(yōu)化了跟隨慢速騎行人不繞行、對(duì)鄰車(chē)道大車(chē)點(diǎn)剎等問(wèn)題,降低系統(tǒng)延遲,提升了系統(tǒng)穩(wěn)定性。
新能源汽車(chē)發(fā)展至今,智駕已經(jīng)成為了“靈魂”,成為了車(chē)企們的“兵家必爭(zhēng)之地”。
不可否認(rèn),相比2020年前,如今的智駕技術(shù)相當(dāng)亮眼,但也需要承認(rèn),近一兩年智駕技術(shù)的發(fā)展速度有所減弱,甚至談得上“緩慢”二字。究其原因,核心還是在于技術(shù)路線。
目前大多車(chē)企智駕技術(shù)架構(gòu),還是沿用更“靠譜”的模塊化。然而這種不會(huì)“犯錯(cuò)”的技術(shù)路線,也意味著編寫(xiě)大量的代碼、不斷高企的任務(wù)量、信息傳遞減損......極大的限制了智駕的潛力和發(fā)展。
忽如一夜春風(fēng)來(lái)。在經(jīng)過(guò)數(shù)年緩慢前行之后,隨著AI大模型的快速發(fā)展,端到端技術(shù)路線的落地,讓智駕迎來(lái)了新的可能。步入2024年之后,端到端技術(shù)成為頭部廠商的新風(fēng)潮。眼下,包括特斯拉、華為、蔚小理在內(nèi),不少玩家都在加速迭代端到端智駕技術(shù)。
雖然各家在更進(jìn)一步的技術(shù)層面呈現(xiàn)出不同路徑,但這樣的集體推動(dòng),卻讓人類(lèi)智駕技術(shù)逼近了質(zhì)變“臨界點(diǎn)”。
什么是“端到端”?
一直以來(lái),關(guān)于實(shí)現(xiàn)完全自動(dòng)駕駛,業(yè)內(nèi)有兩種不同的聲音,一種是模塊化,一種則是端到端。
就目前而言,主流的智能駕駛系統(tǒng)普遍應(yīng)用了模塊化,即將自動(dòng)駕駛?cè)蝿?wù)分解為感知、預(yù)測(cè)和規(guī)劃三個(gè)獨(dú)立的模塊,隨后通過(guò)系統(tǒng)集成來(lái)實(shí)現(xiàn)自動(dòng)駕駛功能。
模塊化技術(shù)架構(gòu),能夠?qū)?fù)雜的自動(dòng)駕駛?cè)蝿?wù)簡(jiǎn)化為多個(gè)相對(duì)容易處理的子任務(wù),有效降低了系統(tǒng)開(kāi)發(fā)的復(fù)雜性。由此構(gòu)建的系統(tǒng)具備較高的可解釋性,允許對(duì)每個(gè)模塊的輸入和輸出進(jìn)行詳細(xì)的分析,一旦發(fā)生故障,可以快速定位到問(wèn)題所在。
雖然優(yōu)勢(shì)明顯,但這種方法也存在不少缺憾。
首當(dāng)其沖的是,模塊化技術(shù)架構(gòu)需要編寫(xiě)大量的代碼,并且在系統(tǒng)設(shè)計(jì)過(guò)程中過(guò)度依賴(lài)人為的先驗(yàn)知識(shí)。而這無(wú)疑限制了自動(dòng)駕駛系統(tǒng)的潛力,導(dǎo)致其泛化能力不足,面對(duì)未知場(chǎng)景時(shí)往往難以有效應(yīng)對(duì)。尤其是在國(guó)內(nèi)復(fù)雜的道路環(huán)境下,局限性較大。
此前何小鵬在接受《每日經(jīng)濟(jì)新聞》采訪時(shí)表示:“模塊化智駕方案從技術(shù)上說(shuō),汽車(chē)在感知、定位、規(guī)劃、控制方面都是分開(kāi)處理的,每一個(gè)環(huán)節(jié)并沒(méi)有關(guān)聯(lián)。因此車(chē)輛在遇到一些場(chǎng)景的時(shí)候會(huì)因?yàn)槿祟?lèi)寫(xiě)入的規(guī)則互相博弈而產(chǎn)生猶豫?!?/span>
與模塊化技術(shù)架構(gòu)有很大不同,“端到端”指的是一個(gè)AI模型,只要輸入原始數(shù)據(jù)就可以輸出最終結(jié)果。
將端到端應(yīng)用到智能駕駛領(lǐng)域,意味著只需要一個(gè)AI模型,就能把攝像頭、毫米波雷達(dá)、激光雷達(dá)等傳感器收集到的感知信息,轉(zhuǎn)換成車(chē)輛方向盤(pán)的轉(zhuǎn)動(dòng)角度、加速踏板的踩踏深度以及制動(dòng)的力度等具體操作指令,讓汽車(chē)實(shí)現(xiàn)自動(dòng)行駛。
對(duì)比之下,模塊化自動(dòng)駕駛系統(tǒng)要一步步來(lái),先識(shí)別路標(biāo),再預(yù)測(cè)其他車(chē)輛的動(dòng)向,最后才決定怎么開(kāi)。而端到端技術(shù)卻能一氣呵成,把感知到的一切都直接轉(zhuǎn)化為行動(dòng)。
并且,由于大模型會(huì)將過(guò)去的路跑經(jīng)驗(yàn)吸收保留,還會(huì)使用過(guò)去的數(shù)據(jù)反復(fù)思考某場(chǎng)景下怎么行駛最好,因此在大量的數(shù)據(jù)積累下,端到端應(yīng)對(duì)各種場(chǎng)景將會(huì)越來(lái)越靈活。
換言之,端到端無(wú)需程序員編寫(xiě)冗長(zhǎng)的代碼去制定規(guī)則,也不會(huì)出現(xiàn)信息傳遞減損,解決了模塊化模型存在的核心“痛點(diǎn)”。
頗具優(yōu)勢(shì),但挑戰(zhàn)也多
借助大模型技術(shù)的深入應(yīng)用,端到端自動(dòng)駕駛系統(tǒng)的優(yōu)勢(shì)日益明顯,為自動(dòng)駕駛技術(shù)的進(jìn)一步發(fā)展提供了一條高效率途徑。
然而,對(duì)于押注這一技術(shù)路線的玩家們來(lái)說(shuō),仍然要面臨不少挑戰(zhàn)。其中,擺在玩家們眼前的第一道難關(guān),就是數(shù)據(jù)。
大模型需要大數(shù)據(jù),本質(zhì)上來(lái)講,端到端自動(dòng)駕駛是海量駕駛視頻片段的學(xué)習(xí)都需要極大規(guī)模的高質(zhì)量數(shù)據(jù),而數(shù)據(jù)的采集、清洗、篩選都是難點(diǎn)。
特斯拉CEO馬斯克在去年的財(cái)報(bào)會(huì)上曾提到數(shù)據(jù)在自動(dòng)駕駛方面的重要性:“用100萬(wàn)個(gè)視頻case訓(xùn)練,勉強(qiáng)夠用;200萬(wàn)個(gè),稍好一些;300萬(wàn)個(gè),就會(huì)感到Wow(驚嘆);到了1000萬(wàn)個(gè),就變得難以置信了。”
截至去年,特斯拉已經(jīng)分析了從特斯拉客戶(hù)的汽車(chē)中收集的1000萬(wàn)個(gè)視頻片段(clips),他們判斷完成一個(gè)端到端自動(dòng)駕駛的訓(xùn)練至少需要100萬(wàn)個(gè)、分布多樣、高質(zhì)量的clips才能正常工作。
要知道,特斯拉在新能源領(lǐng)域的市場(chǎng)占有率非常高,單以國(guó)內(nèi)市場(chǎng)來(lái)說(shuō),2023年純電動(dòng)車(chē)排名中,特斯拉以市占率19.9%奪冠,而比亞迪位居第二。眼下特斯拉采集的數(shù)據(jù)量都不夠用,試想其他車(chē)企又有多少數(shù)據(jù)可用?
況且,并不是所有的行車(chē)數(shù)據(jù)都可以用來(lái)訓(xùn)練端到端模型。有自動(dòng)駕駛工程師就發(fā)現(xiàn),原本積累的路測(cè)數(shù)據(jù)只有2%可用。如何從海量數(shù)據(jù)中找出可以用于訓(xùn)練的有效數(shù)據(jù),這又是一道難關(guān)。
除了采集、篩選這兩道高門(mén)檻之外,數(shù)據(jù)的計(jì)算也對(duì)玩家們的算力規(guī)模提出了要求,廠商們需要不斷提升GPU的采購(gòu)規(guī)模,而這也意味著端到端模型的訓(xùn)練成本非常高昂。
來(lái)源:汽車(chē)之心
不止于此,端到端技術(shù)不得不面對(duì)更棘手的問(wèn)題——黑盒子不可解釋。
前文說(shuō)到,模塊化技術(shù)架構(gòu)下,決策過(guò)程是透明的,決策失誤是可以準(zhǔn)確定位的。但端到端技術(shù),從輸入到輸出,這中間的過(guò)程卻無(wú)法透明化。
試想,如果自動(dòng)駕駛車(chē)輛在緊急情況下做出了錯(cuò)誤的決策,人們卻無(wú)法理解其背后的邏輯,也無(wú)法迅速準(zhǔn)確定位原因,這意味著要付出極大的安全代價(jià)。
路線各有不同
雖然挑戰(zhàn)不少,但在AI智駕趨勢(shì)下,端到端大模型還是“上車(chē)”,成為了玩家們追逐的新玩法。而站在時(shí)間線上,端倒端這一思路最早是由特斯拉提出。
2023年12月,特斯拉的智駕工程師Dhaval Shroff向馬斯克提出建議,拋掉手寫(xiě)規(guī)則,搭建一張神經(jīng)網(wǎng)絡(luò),讓它大量觀看人類(lèi)司機(jī)的駕駛視頻,并自行輸出正確的行駛軌跡。
直到今年1月,采用端到端架構(gòu)的FSD V12正式向北美用戶(hù)推送。據(jù)介紹,這一版本使用的正是單個(gè)端到端的神經(jīng)網(wǎng)絡(luò),即用一整個(gè)囊括輸入到輸出端的大模型,直接進(jìn)行訓(xùn)練。
在特斯拉宣布FSD V12將采用端到端大模型之后,國(guó)內(nèi)亦掀起了端到端大模型應(yīng)用的熱潮,而緊隨特斯拉積極擁抱端到端技術(shù)的是華為和小鵬。
但與特斯拉的單個(gè)神經(jīng)網(wǎng)絡(luò)不通,華為的ADS 3.0智駕系統(tǒng),是將大模型拆分為感知與認(rèn)知(預(yù)測(cè)決策規(guī)劃)兩個(gè)階段,串聯(lián)二者做訓(xùn)練,分別實(shí)現(xiàn)感知和規(guī)控的“端到端”。
至于小鵬,則是國(guó)內(nèi)首個(gè)發(fā)布量產(chǎn)上車(chē)的端到端模型的整車(chē)企業(yè)。
今年5月20日,小鵬汽車(chē)端到端大模型量產(chǎn)上車(chē);7月30日,端到端加持下的XNGP從“全國(guó)都能開(kāi)”正式升級(jí)“全國(guó)都好用”,何小鵬在“小鵬汽車(chē)AI智駕技術(shù)發(fā)布會(huì)”上宣布:將向全球用戶(hù)全量推送AI天璣系統(tǒng)XOS 5.2.0版本。
不過(guò),在具體的技術(shù)路線上,小鵬與華為和特斯拉也有所不同。小鵬的XNGP則分為感知XNet、規(guī)劃XPlaner、控制XBrain三個(gè)部分。這一做法等同于將感知、規(guī)劃和控制三個(gè)模塊串聯(lián)在一起,用高端的方式統(tǒng)一訓(xùn)練。
除了以上三家,還有不少玩家也開(kāi)始選擇端到端。比如今年蔚來(lái)單獨(dú)設(shè)立了一個(gè)大模型部,專(zhuān)門(mén)負(fù)責(zé)端到端的模型研發(fā)。
包括理想,在今年5月裁員中也保留了算法研發(fā)團(tuán)隊(duì):由賈鵬管理,主要負(fù)責(zé)無(wú)圖城市NOA的研發(fā)、落地,以及端到端智駕的預(yù)研。
不管選擇什么樣具體途徑,也無(wú)論究竟誰(shuí)在參與,提高駕駛安全性和便捷度永遠(yuǎn)都是智駕的核心。雖然眼下端到端模型的比拼愈演愈烈。但對(duì)于消費(fèi)者來(lái)說(shuō),過(guò)程或許不那么重要,結(jié)果才是。